NEW RENAISSANCE

INTERNATIONAL SCIENTIFIC AND PRACTICAL CONFERENCE VOLUME 2 | ISSUE 10

HISTOLOGICAL REMODELING OF THE THYMUS UNDER STRESS-INDUCED SECONDARY IMMUNODEFICIENCY

Azimova Dilora Alijon qizi

Asian International University.

diloraxanum1993@gmail.com

https://doi.org/10.5281/zenodo.17449826

Relevance

The increasing prevalence of psychosocial stressors, malnutrition, and environmental factors has significantly contributed to the development of secondary immunodeficiency worldwide.

The thymus, as the central organ of T-lymphocyte maturation, is one of the most stress-sensitive structures. Understanding thymic morphological damage under stress is crucial for early diagnosis, prevention, and development of therapeutic strategies in clinical immunology and pathomorphology.

Objective

To investigate stress-induced histological and cellular changes in the thymus based on experimental models simulating secondary immunodeficiency.

Materials and Methods

Experimental stress conditions were modeled in rats using immobilization, cold exposure (4–6 °C), corticosteroid injections, and sleep deprivation over 14–30 days. After euthanasia, thymic samples were collected and analyzed with:

- ➤ Hematoxylin—eosin staining,
- > PAS reaction,
- > Van Gieson method,
- ➤ Immunohistochemistry (CD3, CD4, CD8, caspase-3),
- > Light and electron microscopy.

Morphometric measurements were used to quantify cortical and medullary alterations.

Results

- ➤ Significant degenerative and apoptotic processes were revealed:
- ➤ Massive lymphocyte apoptosis and necrosis in the cortical layer;
- > Medullary lymphocyte depletion;
- ➤ Vacuolization, wrinkling, and shrinkage of Hassall's corpuscles;
- > Stromal disintegration and perivascular edema;
- ➤ Microcirculatory disorders such as congestion, hemorrhage, and stasis;
- Fatty infiltration and diffuse thymic atrophy.

The main pathogenic mechanism was linked to glucocorticoid-induced caspase-mediated apoptosis of thymocytes. Structural reduction of lymphoid reserves can predispose to infection and autoimmunity.

2025 OKTABR

<u>NEW</u> RENAISSANCE

INTERNATIONAL SCIENTIFIC AND PRACTICAL CONFERENCE VOLUME 2 | ISSUE 10

References

- 1. Sapolsky R. (2018). Stress and Immunosuppression in Mammals. Journal of Neuroimmunology.
- 2. Petrova L. (2021). Morphological Changes of the Thymus Under Stress. Morphology Journal.
- 3. Glaser R., Kiecolt-Glaser J. (2019). Experimental Stress Models in Rats. Brain Behav Immun.