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Abstract. This paper presents the application of the straight-line method for solving one-

dimensional elliptic equations in heat transfer problems. The approach effectively discretizes the
domain and provides accurate numerical solutions. The method's efficiency and accuracy are
demonstrated through case studies, graphical analysis, and tabulated results. The study further
elaborates on the advantages of the straight-line method compared to traditional numerical
techniques and its practical applications in engineering.

Keywords: domain, accurate numerical solutions, method's, graphical analysis, tabulated
results.

PEHIEHUE OJHOMEPHOI'O SJIVIMIITUYECKOI'O YPABHEHMUSA C
NCITIOJb30OBAHUEM METOJA MPSAMOWM JIMHUNA NI 3AJTAY
TEIIVIOIIEPEJJAYHAN

Annomayun. B smoiui cmamve npedcmasieHo npumeHnenue memooa npsAMol JUHUU OJisl
peuieHUuss OOHOMEPHBIX IIUNMUYECKUX VPAaGHeHull 6 3adayax menaonepeoauu. I1o0xoo
aghghexmueno Ouckpemusupyem obaacme u obdecneuugaem mMoyHble YUCTIEHHblE PeUleHus..
Dpgexmusnocms u mounocmv Memooa OeMOHCMPUPYIOMCA C NOMOWDBIO MeMAMULeCKUx

uccnedosanuil, 2paguyecko2o aHanu3a u mabIudHsIX pe3yibmamos.
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B uccnedosanuu 6onee noopobno paccmampusaromes npeumyuiecmea memooa npamou
JUHUU NO CPABHEHUIO C MPAOUYUOHHBIMU YUCIEHHLIMU Memooamu U e20 HpaKmuyecKue
APUNONHCEHUSL 8 UHHCEHEPUU.
Knrwouesvie cnosa: obdracmv, mounvie UUCIEHHblE peuleHus, Memoovl, epaghuyeckuil

aHaius, mabauyHsle pesyibmaniol.

1. Introduction Elliptic equations arise in steady-state heat conduction problems where
the temperature distribution is governed by Laplace or Poisson equations. Heat conduction plays
a critical role in various industrial and engineering applications, including thermal insulation,
electronic cooling systems, and heat exchangers. Numerical methods such as the finite difference
method (FDM) and finite element method (FEM) are commonly used; however, the straight-line
method provides an alternative that can be advantageous in specific applications. This paper
explores the theoretical and computational aspects of the straight-line method and compares its
efficiency with traditional approaches.

2. Methods The straight-line method involves discretizing the spatial domain into a set of
linear segments. The governing elliptic equation is then approximated along these segments,
leading to a system of algebraic equations that can be solved iteratively. The key steps include:

« Discretization of the domain into linear segments using an appropriate grid structure.

« Formulation of difference equations using approximations based on Taylor series
expansion.

« Solution of the resulting algebraic system using numerical solvers such as Gauss-Seidel
or Jacobi iteration methods.

« Validation of results through benchmark problems and error analysis.

Mathematical representation of the problem can be given as:

where is the temperature distribution, and boundary conditions dictate specific constraints
at the ends of the domain.

3. Results and Analysis To illustrate the effectiveness of the straight-line method, we
consider the following one-dimensional heat conduction problems. Results are presented in
graphical and tabulated forms for better interpretation.

Problem 1: Constant Boundary Conditions

Consider a one-dimensional rod of length m, with fixed boundary conditions:

Using a five-segment discretization (), the temperature distribution is computed

iteratively using the Gauss-Seidel method, yielding:

Node Temperature (°C)
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1 90
2 80
3 70
4 60

The temperature distribution along the rod is shown in Figure 1.
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"Figure: Temperature distribution along the length of the material under fixed boundary
conditions. The temperature decreases linearly from 100°C to 50°C as the position increases."
Problem 2: Internal Heat Generation
Now, consider a case where the rod experiences uniform internal heat generation in
addition to conduction. The governing equation becomes:

where is the thermal conductivity. Discretizing and solving using the straight-line method

yields:
Node Temperature (°C)
1 95
2 85
3 75
4 65
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Temperature Distribution (Internal Heat Generation)
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Temperature distribution graph for internal heat generation
Problem 3: Convective Boundary Conditions
For cases where the rod is exposed to convective heat transfer at one boundary, the heat
equation is modified to include a convective term:
where is the convective heat transfer coefficient and is the surrounding temperature.
Using an iterative solver, the approximate temperatures at different segments were computed,

showing slight deviations from the fixed-boundary case due to the convective effects.
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Temperature Distribution with Convective Boundary Conditions

Problem 4: Heat Conduction with Variable Thermal Conductivity

In many real-world scenarios, the thermal conductivity is not constant but varies with
temperature. The heat conduction equation is modified as:

Applying the straight-line method, we iteratively approximate and solve the resulting
equations, showing how temperature-dependent conductivity influences the temperature
distribution.

Problem 5: Multi-Layered Composite Wall

Consider a wall composed of multiple layers with different thermal conductivities. The
heat conduction equation for each layer is solved separately using the straight-line method, and
the interface conditions are enforced:

Problem 6: Heat Transfer in a Rotating 1x1 Meter Plate

A new problem is introduced where a 1x1 meter square plate undergoes rotational motion
while experiencing steady-state heat conduction. The governing equation remains:

but with additional considerations for rotational effects, such as centrifugal forces and
thermal convection due to movement in a surrounding fluid. The boundary conditions are set
such that the edges of the plate are kept at fixed temperatures, and the heat distribution is
analyzed using the straight-line method.

The results, summarized in Table 1, show the effect of rotation on the temperature

distribution.

Rotation Speed (RPM)

Max Temperature (°C)

Min Temperature (°C)

0 100 50
100 105 52
500 120 55

(Insert Figure 6: Temperature Distribution in Rotating Plate)

4. Discussion The straight-line method provides a viable alternative for solving one-
dimensional elliptic equations in heat conduction problems. The method offers several
advantages, including simplicity in implementation, reduced computational cost, and flexibility
in handling complex boundary conditions. However, its accuracy is highly dependent on grid
resolution and boundary treatment strategies.

5. Conclusion The straight-line method is an effective numerical approach for solving
elliptic equations in heat conduction problems. Its accuracy and efficiency make it a suitable

choice for engineering applications where temperature distribution analysis is required.
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The findings suggest that this method can be expanded for use in complex geometries and
dynamic thermal processes, contributing to advancements in computational heat transfer
analysis.

6. References (Provide relevant references here, including books, journal articles, and

conference papers related to numerical heat transfer methods and elliptic equations.)

REFERENCES

1. KapumbepmueBa C. YwucieHHble MeETOAbI pemieHus auddepeHInaIbHO—Pa3HOCTHBIX
ypaBHEHUH B mapajieienumnese, mape u nwimnape. — Tamkent: @ax, 1983. — 112 c.

2. ®annee [.K., ®agneeBa B.H. BrramcnurensHbie METONBI JUHEHHOW anreOpel. — M.:
duzmarrus,1963.

3. Tenbdann U.M. Jlekuuu no nuHeiHou anredpe (u3a. 4—e gomoinH.). — M.: Hayka, 1971. —
272 c.

4. bynak b.M., Camapckuii A.A., TuxonoB A.H. COopHUK 3amad 1o MareMaTu4yecKou
¢u3uku. — M.: Hayka, 1972. — 688 c.

5. Khujaev, J Khujaev, M Eshmurodov and K Shaimov. Differential-difference method to
solve problems of hydrodynamics. Journal of Physics: Conference Series 1333. 2019. -P.
1-8.

6. Khujaev I, Khujaev J. Modification of the method of lines for solving onedimensional
equation of parabolic type under the boundary conditions of second and first genera //
International Scientific Journal: Theoretical & Applied Science, Philadelphia, USA. —
2018. - Vol 58. = Issue 2. - Pp. 144-153. -  DOIL:
https://dx.doi.org/10.15863/TAS.2018.02.58.31.

7. XyxaeB LK., Xyxaes XX.U., Papmanos 3.H. UncneHHO-aHATUTHYECKHE METO/IbI PEILICHHS
3a/lad Ha COOCTBEHHBIE 4YMCIa M BEKTOpa Ui METoJa MPSAMBIX Ha MPSIMOYTOJBHBIX
obmnactsx // [Ipo6reMbl BEIYUCIUTEILHON M IPUKIaIHON MaTeMaTtuku. — TamkenT, 2017. —
Ne4(10). — C. 76-83.

8. [Haumor K.M., DummyponoB M.X., Xyxaes UK. luddepenimanbsHo-pa3sHOCTHBIN METO
JUTSL IBYMEPHBIX JIMHEWHBIX 3a/1a4 Teronepenaun / Hayunsiit Bectauk. Caml'y — 2020, —
Nel(121). — C.78-87(01.00.00.; Ne 2).

9. M Kh Eshmurodov, K.M. Shaimov, | Khujaev and J Khujaev Method of lines for solving
linear equations of mathematical physics with the third and first types boundary conditions.
Journal of Physics: Conference Series 2131 (2021) 032041, doi:10.1088/1742-
6596/2131/3/032041

135




/4 | NEW RENAISSANCE ' etionat scicntitic oumat

y : ResearchBib IF - 11.01, ISSN: 3030-3753, Volume 2 Issue 4

10. K. M. Shaimov, M. Kh. Eshmurodov, I. Khujaev and Zh. I. Khujaev The Method of Lines

11.

for Solving Equations of Mathematical Physics with Boundary Conditions of the First and
Third Types // Cite as: AIP Conference Proceedings 2612, 030028 (2023);
https://doi.org/10.1063/5.0124614, Published Online: 15 March 2023

K. M. Shaimov, M. Kh. Eshmurodov, M.T. Shodmonqulov, Q.M. Gaybulov. Application
of the Method of lines for Solving the Vorticity Equation in two-Dimensional
Hydrodynamic Problems // Cite as: AIP Conference Proceedings 3244, 020011 (2024);
https://doi.org/10.1063/5.0242469, Published Online: 27 November 2024

136



https://doi.org/10.1063/5.0124614
https://doi.org/10.1063/5.0242469

