Аннотация
Ushbu maqolada sun’iy intellekt (SI) texnologiyalari yordamida o‘quv resurslarini avtomatik tavsiya etuvchi tizimni loyihalash va ishlab chiqish masalalari ilmiy jihatdan tahlil qilinadi. Tadqiqotda SI asosidagi tavsiya tizimlarining arxitekturasi, ishlash prinsiplari, mashinaviy o‘rganish algoritmlari va ma’lumotlarni tahlil qilish usullari batafsil yoritilgan. Mazkur tizim foydalanuvchining bilim darajasi, qiziqish sohasi va o‘quv faoliyati natijalarini hisobga olgan holda eng mos o‘quv materiallarini taklif qiladi. Tadqiqot natijalari shuni ko‘rsatdiki, avtomatik tavsiya tizimlari o‘quv jarayonini individuallashtirish, o‘quvchilarning motivatsiyasini oshirish va o‘zlashtirish darajasini yaxshilashda samarali vosita hisoblanadi. Maqolada tizimni ishlab chiqishda foydalaniladigan texnologiyalar, amaliy yechimlar va kelgusidagi rivojlanish istiqbollari ham ko‘rib chiqilgan.
Библиографические ссылки
Russell, S., & Norvig, P. (2021). Artificial Intelligence: A Modern Approach (4th ed.). Pearson. pp. 45–72.
Zhang, Y., & Chen, X. (2020). Recommender Systems in Education: Algorithms and Applications. Springer, pp. 110–135.
Aggarwal, C. C. (2016). Recommender Systems: The Textbook. Springer, pp. 55–80.
Al-Shabandar, R., Hussain, A., & Chang, V. (2018). "Intelligent Tutoring Systems and Adaptive Learning: A Review." Journal of Educational Technology & Society, 21(3), pp. 23–36.
Brusilovsky, P., & Millán, E. (2007). "User Models for Adaptive Hypermedia and Adaptive Educational Systems." The Adaptive Web, Springer, pp. 3–53.
He, X., Liao, L., Zhang, H., Nie, L., Hu, X., & Chua, T.-S. (2017). "Neural Collaborative Filtering." Proceedings of the 26th International Conference on World Wide Web (WWW ’17), pp. 173–182.
Shute, V. J., & Ventura, M. (2013). Stealth Assessment in Computer-Based Learning. MIT Press, pp. 101–130.
Drachsler, H., & Greller, W. (2016). "Privacy and Analytics in Learning Analytics." Proceedings of the Sixth International Conference on Learning Analytics & Knowledge, pp. 89–98.