Аннотация
Shahar jamoat transporti tizimida yo‘lovchilar oqimini samarali boshqarish va marshrutlarni optimallashtirish dolzarb masalalardan biridir. Ushbu tadqiqotda Dijkstra algoritmining nazariy asoslari va graflar nazariyasidagi o‘rni tahlil qilinib, uning avtobus yo‘nalishlarini rejalashtirishdagi qo‘llanish imkoniyatlari ko‘rib chiqildi. Farg‘ona shahri transport ma’lumotlari asosida algoritmning amaliy qo‘llanilishi o‘rganilib, foydalanuvchilar uchun eng qisqa marshrutni tanlashga yordam beruvchi konseptual model ishlab chiqildi. Tadqiqot natijalari algoritmning transport tizimida samaradorlikni oshirishdagi ahamiyatini ko‘rsatdi.
Библиографические ссылки
Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische Mathematik, 1, 269–271.
Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to Algorithms (3rd ed.). MIT Press.
Bellman, R. (1958). On a routing problem. Quarterly of Applied Mathematics, 16(1), 87–90.
Ford, L. R., & Fulkerson, D. R. (1962). Flows in Networks. Princeton University Press.
Floyd, R. W. (1962). Algorithm 97: Shortest path. Communications of the ACM, 5(6), 345.
Warshall, S. (1962). A theorem on Boolean matrices. Journal of the ACM, 9(1), 11–12.
Ahuja, R. K., Magnanti, T. L., & Orlin, J. B. (1993). Network flows: Theory, algorithms, and applications. Prentice Hall.
G‘aniev, S. (2020). Transport logistikasida zamonaviy yondashuvlar. O‘zbekiston transport va kommunikatsiya jurnali, 4(2), 45–52.