Аннотация
Ushbu maqolada biopotensial signallarni, xususan elektromiyogramma (EMG) va elektroensefalogramma (EEG) signallarini qayta ishlashda mashinaviy o‘qitish algoritmlarining samaradorligi tahlil qilinadi. Tadqiqotlar SVM, random forest va konvolyutsion neyron tarmoqlari kabi algoritmlarning signallarni klassifikatsiya qilish va patologik naqshlarni aniqlashdagi samaradorligini ko‘rsatdi. EMG va EEG signallarining murakkab tabiati, shovqin va artefaktlarga moyilligi ularni qayta ishlash jarayonini qiyinlashtiradi. Shu sababli, xususiyatlarni ekstraktsiya qilish (RMS, spektral energiya, dominant chastota) algoritmlarning aniqlik va sezgirligini oshirishda muhim rol o‘ynaydi. Tadqiqot natijalari mashinaviy o‘qitish algoritmlari biopotensial signallarni qayta ishlashda yuqori samaradorlikka ega ekanligini tasdiqladi, shuningdek, inson-kompyuter interfeyslari, neyroprostetik qurilmalar va nevrorehabilitatsiya jarayonlarida amaliy qo‘llanilishi mumkinligini ko‘rsatdi. Ushbu ish tibbiyot va biomeditsina muhandisligi sohalarida sun’iy intellektga asoslangan tizimlarni rivojlantirish uchun ilmiy asos yaratadi.
Библиографические ссылки
Phinyomark, A., Limsakul, C., & Phukpattaranont, P. (2009). A Novel Feature Extraction for Robust EMG Pattern Recognition. arXiv preprint arXiv:0912.3973.
Ullah, A., Ali, S., Khan, I., Khan, M. A., & Faizullah, S. (2020). Effect of Analysis Window and Feature Selection on Classification of Hand Movements Using EMG Signal. arXiv preprint arXiv:2002.00461.
Bakırcıoğlu, K., & Özkurt, N. (2023). Classification of EMG Signals Using Convolution Neural Network. International Journal of Applied Methods in Electronics and Computers
Ho, C. K., Tan, F. K., & Koh, Y. Y. (2024). Machine Learning-Based Feature Extraction and Classification of EMG Signals for Intuitive Prosthetic Control. Applied Sciences, 14(13), 5784.
de Jong, I. P., Sburlea, A. I., & Valdenegro Toro, M. (2023). Uncertainty Quantification in Machine Learning for Biosignal Applications A Review. arXiv preprint arXiv:2312.09454.
Samal, P., & Hashmi, M. F. (2024). Role of machine learning and deep learning techniques in EEG-based BCI emotion recognition system: a review. Artificial Intelligence Review.