MA'LUMOTLAR BILAN ISHLASHDA SUN'IY INTELLEKT MODELLARINING ISHLASHI VA OPTIMALLASHTIRISH USULLARI
pdf

Ключевые слова

sun'iy intellekt, ma'lumotlarni qayta ishlash, chuqur o'rganish, mashina o'rganish, optimallashtirish usullari, katta ma'lumotlar, gradient tushish, regularizatsiya, transfer o'rganish.

Аннотация

Ushbu tezis ma'lumotlar bilan ishlashda sun'iy intellekt (SI) modellarining ishlash printsiplari va ularni optimallashtirish usullarini chuqur o'rganadi. Zamonaviy SI modellarining turli xil ma'lumotlar turlari bilan ishlash qobiliyati, shu jumladan katta hajmli va murakkab strukturali ma'lumotlarni qayta ishlash jarayonlari batafsil tahlil qilinadi. Tezisda modellarning o'qitish algoritmlari, xususan, chuqur o'rganish (deep learning) va mashina o'rganish (machine learning) usullarining qiyosiy tahlili, shuningdek, ularning ishlashini optimallashtirish uchun qo'llaniladigan zamonaviy yondashuvlar va texnikalar keng muhokama qilinadi. Tadqiqot natijalari SI modellarining samaradorligini oshirish va ularning turli sohalardagi amaliy qo'llanilishini kengaytirish imkoniyatlarini ko'rsatadi.

pdf

Библиографические ссылки

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.

Ruder, S. (2016). An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747.

Hutter, F., Kotthoff, L., & Vanschoren, J. (2019). Automated machine learning: methods, systems, challenges. Springer Nature.

Wang, T., Zhu, J. Y., Torralba, A., & Efros, A. A. (2018). Dataset distillation. arXiv preprint arXiv:1811.10959.

Shalev-Shwartz, S., & Ben-David, S. (2014). Understanding machine learning: From theory to algorithms. Cambridge university press.

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). BERT: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.

Finn, C., Abbeel, P., & Levine, S. (2017). Model-agnostic meta-learning for fast adaptation of deep networks. In International Conference on Machine Learning (pp. 1126-1135). PMLR.

Yang, Q., Liu, Y., Chen, T., & Tong, Y. (2019). Federated machine learning: Concept and applications. ACM Transactions on Intelligent Systems and Technology (TIST), 10(2), 1-19.