Abstract
Regression analysis is one of the fundamental methods in data analysis used for prediction and forecasting. This paper explores the application of definite integrals in regression models, particularly in improving accuracy in predicting nonlinear trends. By incorporating definite integrals, we demonstrate how smoothing techniques and error minimization can enhance predictive capabilities in economic and scientific domains. Experimental results indicate a significant improvement in model accuracy compared to traditional approaches.
References
Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.
Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer.
Murphy, K. P. (2012). Machine Learning: A Probabilistic Perspective. MIT Press.
Bektosh S., Misliddin M. Using Python in the analysis of econometric models //Innovations in exact science. – 2024. – Т. 1. – №. 2. – С. 19-27.
Zakhidov D., Bektosh S. Division of heptagonal social networks into two communities by the maximum Likelihood method //Horizon: Journal of Humanity and Artificial Intelligence. – 2023. – Т. 2. – С. 641-645.
Останов К. и др. Некоторые особенности изучения теорем сложения и умножения вероятностей в школе //Academy. – 2019. – №. 11 (50). – С. 27-28.