SUN’IY INTELLEKT YORDAMIDA KIBERXAVFSIZLIKNI MUSTAHKAMLASH: ZAMONAVIY YONDASHUVLAR VA ALGORITMLAR
PDF

Keywords

Sun’iy intellekt, kiberxavfsizlik, mashinaviy o‘rganish, tahdid aniqlash, algoritmlar, himoya tizimlari.

Abstract

Ushbu maqolada sun’iy intellekt (SI) texnologiyalarining kiberxavfsizlik sohasiga tatbiq etilishi, ayniqsa zamonaviy yondashuvlar va mashinaviy o‘rganish algoritmlari asosida tahdidlarni aniqlash, bashorat qilish va ularga javob berish bo‘yicha imkoniyatlari yoritiladi. Shuningdek, amaliy misollar va natijalar asosida SI vositalarining samaradorligi tahlil qilinadi.

PDF

References

Buczak, A. L., & Guven, E. (2016). A survey of data mining and machine learning methods for cyber security intrusion detection. IEEE Communications Surveys & Tutorials, 18(2), 1153–1176. DOI: 10.1109/COMST.2015.2494502

Chio, C., & Freeman, D. (2018). Machine Learning and Security: Protecting Systems with Data and Algorithms. O’Reilly Media.

Sarker, I. H. (2022). Machine learning techniques for cybersecurity: A comprehensive review and roadmap. IEEE Access, 9, 17265–17299.

DOI: 10.1109/ACCESS.2021.3135954

Sharafaldin, I., Lashkari, A. H., & Ghorbani, A. A. (2018). Toward generating a new intrusion detection dataset and intrusion traffic characterization. ICISSP, 108–116.

(CIC-IDS2017 dataset asoschisi)

Javaid, A., Niyaz, Q., Sun, W., & Alam, M. (2016). A deep learning approach for network intrusion detection system. Proceedings of the 9th EAI International Conference on Bio-inspired Information and Communications Technologies (BICT 2015).

DOI: 10.4108/eai.3-12-2015.2262516

Kaspersky Lab (2023). Artificial Intelligence in Cybersecurity: Opportunities and Risks.

Retrieved from: https://www.kaspersky.com

Sommer, R., & Paxson, V. (2010). Outside the closed world: On using machine learning for network intrusion detection. 2010 IEEE Symposium on Security and Privacy, 305–316.

DOI: 10.1109/SP.2010.25

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.

(Chuqur o‘rganish nazariyasi uchun asosiy manba)

Zhang, Y., & Paxson, V. (2020). Detecting and analyzing automated activity on large-scale network infrastructures. ACM Transactions on Privacy and Security, 23(1), 1–30.

NSL-KDD Dataset – University of New Brunswick.

Ma'lumot to‘plami: https://www.unb.ca/cic/datasets/nsl.html

Шаимов К.М., Эшмуродов М.Х., Хужаев И.К. Дифференциально-разностный метод для двумерных линейных задач теплопередачи // Научный вестник. СамГУ – 2020, – №1(121). – C.78-87(01.00.00.; № 2).

M Kh Eshmurodov, K.M. Shaimov, I Khujaev and J Khujaev Method of lines for solving linear equations of mathematical physics with the third and first types boundary conditions. Journal of Physics: Conference Series 2131 (2021) 032041, doi:10.1088/1742-6596/2131/3/032041

K. M. Shaimov, M. Kh. Eshmurodov, I. Khujaev and Zh. I. Khujaev The Method of Lines for Solving Equations of Mathematical Physics with Boundary Conditions of the First and Third Types // The method of lines for solving equations of mathematical physics with boundary conditions of the first and third types, Cite as: AIP Conference Proceedings 2612, 030028 (2023); https://doi.org/10.1063/5.0124614, Published Online: 15 March 2023

K. M. Shaimov, M. Kh. Eshmurodov, M.T. Shodmonqulov, Q.M. Gaybulov. Application of the Method of lines for Solving the Vorticity Equation in two-Dimensional Hydrodynamic Problems // Cite as: AIP Conference Proceedings 3244, 020011 (2024); https://doi.org/10.1063/5.0242469, Published Online: 27 November 2024