MOLIYAVIY OID VAQTLI QATORLARNING STATISTIK TAHLIL USULLARI
PDF

Keywords

moliyaviy vaqtli qatorlar, statistik modellashtirish, ARIMA modeli, SARIMA modeli, ETS modeli, GARCH modeli, prognozlash, statsionarlik, mavsumiylik, volatillik.

Abstract

Mazkur maqolada moliyaviy vaqtli qatorlarni tahlil qilishda qoʻllaniladigan asosiy statistik modellashtirish usullari keng koʻlamda tahlil qilinadi. Xususan, AR, MA, ARMA, ARIMA, SARIMA, ETS va GARCH modellarining nazariy asoslari, afzalliklari va amaliy qoʻllanilishi yoritilgan. Har bir modelning statistik xususiyatlari, statsionarlik, trend va mavsumiylik kabi komponentalar bilan ishlashdagi roli muhokama qilinadi. Maqola davomida klassik statistik yondashuvlarning kuchli va zaif tomonlari aniqlanadi hamda zamonaviy moliyaviy bozor sharoitida bu modellarning imkoniyatlari baholanadi. Natijalar statistik yondashuvlar yordamida moliyaviy vaqtli qatorlarni prognozlashda ishonchli tahlil vositalarini tanlashda muhim manba boʻlib xizmat qiladi.

PDF

References

Box, G.E.P., Jenkins, G.M., Reinsel, G.C. Time Series Analysis: Forecasting and Control. Wiley Series, 2008.

Hamilton, J.D. Time Series Analysis. Princeton University Press, 1994.

Hyndman, R.J., Athanasopoulos, G. Forecasting: Principles and Practice. OTexts, 2021. https://otexts.com/fpp3/

Tsay, R.S. Analysis of Financial Time Series. John Wiley & Sons, 2010.

Engle, R.F. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation", Econometrica, 50(4), 1982.

Bollerslev, T. "Generalized Autoregressive Conditional Heteroskedasticity", Journal of Econometrics, 31(3), 1986.

Shumway, R.H., Stoffer, D.S. Time Series Analysis and Its Applications: With R Examples. Springer, 2017.

Chatfield, C. The Analysis of Time Series: An Introduction. Chapman and Hall, 2003.

Franses, P.H. Time Series Models for Business and Economic Forecasting. Cambridge University Press, 2014.