Abstract
Ushbu maqolada atom elektr stansiyalarida (AES) Data Science texnologiyalarining ahamiyati va qo‘llanilishi tahlil qilingan. Xususan, real vaqtli monitoring, nosozliklarni oldindan aniqlash, xavfsizlikni kuchaytirish va energiya ishlab chiqarishni optimallashtirishda sun’iy intellekt, mashinali o‘rganish va katta ma’lumotlar tahlilining roli yoritilgan. Dunyo tajribasi va statistik ma’lumotlar asosida AES faoliyatini raqamlashtirish jarayonida Data Science texnologiyalarining o‘rni chuqur tahlil qilinadi. Maqola soha mutaxassislari, talabalar hamda ilmiy izlanish olib boruvchilar uchun foydali manba bo‘lib xizmat qilishi mumkin.
References
IAEA (International Atomic Energy Agency). (2020). Artificial Intelligence for Nuclear Technology and Applications. Vienna: IAEA Publications. https://www.iaea.org
Ahmad, M., & Khan, F. (2021). Application of Machine Learning and Big Data in Nuclear Power Plants. Journal of Nuclear Engineering and Technology, 53(6), 1592–1605. https://doi.org/10.1016/j.net.2020.11.012
Tsoy, A., Kim, H., & Park, C. (2020). Data-Driven Approach for Fault Detection in Nuclear Power Plants Using Deep Learning. Energies, 13(9), 2135. https://www.mdpi.com/1996-1073/13/9/2135
Qian, Z., & Zhang, Y. (2019). Predictive Maintenance of Nuclear Plant Equipment Using AI Techniques. In Proceedings of the International Conference on Nuclear Engineering (ICONE), ASME. https://asmedigitalcollection.asme.org
Министерство энергетики Российской Федерации. (2023). Цифровизация в атомной энергетике: современные подходы и решения. Москва: Минэнерго России. https://minenergo.gov.ru
О'zbekiston Respublikasi Energetika Vazirligi. (2024). O‘zbekistonda AES qurilishi va raqamli texnologiyalarning ahamiyati. https://minenergy.uz
Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press. https://www.deeplearningbook.org