Abstract
Mazkur maqolada uchuvchisiz uchish apparatlari (UUAlar) yordamida qishloq xo‘jaligi ekinlarini monitoring qilish, oziqlanish holatini baholash va kimyoviy dorilash jarayonlarini optimallashtirish imkoniyatlari tahlil qilingan[15]. Tadqiqotda multispektral va termal sensorlardan foydalanish orqali ekinlarning suv va oziq moddalarga bo‘lgan ehtiyojini aniqlash, shuningdek, zararkunandalar va begona o‘tlarni erta bosqichda aniqlash samaradorligi ko‘rsatib o‘tilgan. Shuningdek, DJI Agras T40 droni misolida an’anaviy va zamonaviy (dronli) usullar o‘rtasidagi texnik va iqtisodiy taqqoslov amalga oshirilgan. Natijalar shuni ko‘rsatadiki, UUAlardan foydalanish resurs sarfini 30 barobar kamaytiradi, ekologik zararlarni pasaytiradi va hosildorlikni oshiradi.
References
Yang, G.; Liu, J.; Zhao, C.; Li, Z.; Huang, Y.; Yu, H.; Xu, B.; Yang, X.; Zhu, D.; Zhang, X.; et al. Unmanned aerial vehicle remote sensing for field-based crop phenotyping: Current status and perspectives. Front. Plant Sci. 2017, 8, 1111. [Google Scholar] [CrossRef] [PubMed]
Mogili, U.R.; Deepak, B. Review on application of drone systems in precision agriculture. Procedia Comput. Sci. 2018, 133, 502–509. [Google Scholar] [CrossRef]
Puri, V.; Nayyar, A.; Raja, L. Agriculture drones: A modern breakthrough in precision agriculture. J. Stat. Manag. Syst. 2017, 20, 507–518. [Google Scholar] [CrossRef]
Kulbacki, M.; Segen, J.; Knieć, W.; Klempous, R.; Kluwak, K.; Nikodem, J.; Kulbacka, J.; Serester, A. Survey of Drones for Agriculture Automation from Planting to Harvest. In Proceedings of the 2018 IEEE 22nd International Conference on Intelligent Engineering Systems (INES), Las Palmas de Gran Canaria, Spain, 21–23 June 2018; pp. 000353–000358. [Google Scholar]
Manfreda, S.; McCabe, M.; Miller, P.; Lucas, R.; Pajuelo Madrigal, V.; Mallinis, G.; Ben Dor, E.; Helman, D.; Estes, L.; Ciraolo, G.; et al. On the use of unmanned aerial systems for environmental monitoring. Remote Sens. 2018, 10, 641. [Google Scholar] [CrossRef]
Adão, T.; Hruška, J.; Pádua, L.; Bessa, J.; Peres, E.; Morais, R.; Sousa, J. Hyperspectral imaging: A review on UAV-based sensors, data processing and applications for agriculture and forestry. Remote Sens. 2017, 9, 1110. [Google Scholar] [CrossRef]
Maes, W.H.; Steppe, K. Perspectives for remote sensing with unmanned aerial vehicles in precision agriculture. Trends Plant Sci. 2019, 24, 152–164. [Google Scholar] [CrossRef] [PubMed]
Current Capabilities and Future Directions; J. L. Zhang, Y.; P. Wang, D. H. Lee; MDPI Sensors Journal; https://www.mdpi.com/1424-8220/20/19/5734
Autonomous UUAe Surveillance for Smart Cities: AI and IoT Integration; B. D. Chen, A. Gupta, J. R. Lee; IEEE Access; https://ieeexplore.ieee.org/document/9456783
Precision Agriculture Using UAVs: A Data-Driven Approach; S. L. Yang, H. F. Nakamura, R. M. Brown; MDPI Agriculture Journal; https://www.mdpi.com/2227-7390/8/12/998
Tsouros, D.C.; Triantafyllou, A.; Bibi, S.; Sarigannidis, P.G. Data acquisition and analysis methods in UAV-based applications for Precision Agriculture. In Proceedings of the 2019 IEEE 15th International Conference on Distributed Computing in Sensor Systems (DCOSS), Santorini Island, Greece, 29–31 May 2019; pp. 377–384. [Google Scholar]
Huang, H.; Deng, J.; Lan, Y.; Yang, A.; Deng, X.; Zhang, L. A fully convolutional network for weed mapping of unmanned aerial vehicle (UAV) imagery. PLoS ONE 2018, 13, 1–19. [Google Scholar] [CrossRef] [PubMed]
Hunt, E.R.; Horneck, D.A.; Spinelli, C.B.; Turner, R.W.; Bruce, A.E.; Gadler, D.J.; Brungardt, J.J.; Hamm, P.B. Monitoring nitrogen status of potatoes using small unmanned aerial vehicles. Precis. Agric. 2018, 19, 314–333. [Google Scholar] [CrossRef]
Zhang, J.; Basso, B.; Price, R.F.; Putman, G.; Shuai, G. Estimating plant distance in maize using Unmanned Aerial Vehicle (UAV). PLoS ONE 2018, 13, e0195223. [Google Scholar] [CrossRef] [PubMed]
Wang, J.J.; Ge, H.; Dai, Q.; Ahmad, I.; Dai, Q.; Zhou, G.; Qin, M.; Gu, C. Unsupervised discrimination between lodged and non-lodged winter wheat: A case study using a low-cost unmanned aerial vehicle. Int. J. Remote Sens. 2018, 39, 2079–2088. [Google Scholar] [CrossRef]