KARDIOLOGIK SIGNALLAR ORQALI ANIQLANADIGAN KASALLIKLAR VA ULARNI BARTARAF ETUVCHI KOGNITIV MODEL
PDF

Keywords

kognitiv parametrlar, SI, mashinali o‘qitish, LSTM (Long Short-Term Memory), EEG, EKG, Random Forest.

Abstract

Yurak-qon tomir kasalliklari butun dunyo bo‘yicha o‘limning asosiy sabablaridan biri bo‘lib, ularni erta aniqlash va davolash bemor hayotini saqlab qolishda muhim ahamiyatga ega. Mazkur maqolada yurak faoliyatini kuzatish imkonini beruvchi elektrokardiografik (EKG) signallar asosida yurak kasalliklarini aniqlovchi va ularga mos kognitiv model ishlab chiqiladi. Model sun’iy intellekt (SI) usullaridan, xususan signalni raqamli ishlash (DSP), xususiyatlar ajratish (feature extraction), klassifikatsiya (SVM, CNN) kabi usullardan foydalanadi. Tadqiqotda MIT-BIH aritmiya ma’lumotlar bazasidagi real EKG signallar tahlil qilinib, yurak ritmindagi o‘zgarishlar asosida aritmiya, taxikardiya, bradikardiya kabi kasalliklar aniqlanadi. Shuningdek, har bir yurak signaliga mos kognitiv xususiyatlar (bemor yoshi, jinsi, anamnezi, jismoniy faollik holati) ham hisobga olinadi. Model nafaqat kasallikni aniqlaydi, balki uni oldini olish bo‘yicha tavsiyalar ham beradi.

Tahlil natijalarida 92% aniqlik, 0.89 F1-score, 0.91 sezuvchanlik (recall) ko‘rsatkichlariga erishildi. Taklif etilgan model real vaqtli monitoring uchun mos bo‘lib, mobil yoki klinik muhitga tatbiq qilinishi mumkin. Tadqiqot yurak kasalliklarining erta aniqlanishi va profilaktikasida kognitiv sun’iy intellekt modellarining muhim rolini ko‘rsatadi.

PDF

References

Xakimjon, Z., Oybek, M. (2022). Parallel Algorithm for Calculating the Learning Processes of an Artificial Neural Network. AIP Conference Proceedings. 2022, 2647, 050006.

Ganixodjayeva D.Z. The Relationship of a Mathematical Model with Systemic-Cognitive Analysis Using Non-Parametric Models. “Бир макон бир йўл” SIRCON 2023 xalqaro ilmiy-amaliy konferensiya материаллари тўплами. Тошкент 3-6 окятбрь, 2023. 550-556 б.

Ganixodjayeva D.Z., М.З. Махкамова. Когнитивная структуризация, формальная постановка задачи и синтез модели. Республика олий ўқув юртлари профессор-ўқитувчиларининг илмий ишлари тўплами, Тошкент, 2014, 188-189 б.

Ganixodjayeva D.Z., М.З. Махкамова. Математический метод системно-когнитивного анализа в свете идей интервальной бутстропной робастной статистики объектов нечисловой природы. “Амалий математика ва информацион технологияларнинг долзарб муаммолари – Ал-Хоразмий 2014” Халқаро анжуман, маърузалари тўплами (Тўплам № 2), 2014 й., 15-17 сентябрь, 131-133 б.

Divya Gupta, Tanishka Garg, Latika Kharb. How Cognitive Technology Is Better Than AI? International Journal of Advanced Trends in Computer Applications (IJATCA)Volume 6, Number 2, Dec - 2019, pp. 33-35

Izabela Marszałek-Kotzur. Cognitive Technologies - Are We in Danger of Humanizing Machines and Dehumanizing Humans? Management SystemsinProduction Engineering. 2022, Volume 30, Issue 3, pp. 269-275

National Archives and Records Administration. Cognitive Technologies White Paper Records Management Implications. Cognitive Technologies White Paper.(2020). 29 p.

Abid Haleem, Mohd Javaid. Role of Cognitive Computing in Enhancing Innovative Healthcare Solutions. Advances in Biomarker Sciences and Technology (2024). DOI: 10.1016/j.abst.2024.08.002

Jeff Daniel, Arman Sargolzaei, Mohammed Abdelghani3, Saman Sargolzaei, Ben Amaba. Blockchain Technology, Cognitive Computing, and Healthcare Innovations. Journal of Advances in Information Technology Vol. 8, No. 3, August 2017.

Rajat K.B., Pradip K.B., Prabin K.P., Shilpee A. Dasgupta. Adoption of cognitive computing decision support system in the assessment of health-care policymaking. Journal of Systems and Information Technology (2023). Vol. 25 No. 4, pp. 395-439. https://doi.org/10.1108/JSIT-10-2021-0221